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Abstract 

Recently, networked and cluster computation have become 
very popular. This paper is an introduction to a new C 
based parallel language f o r  architecture-adaptive 
programming, a c e  C .  The primary purpose of a c e  
(Architecture-adaptive Computing Environment) is to 
encourage programmers to implement applications on 
parallel architectures by providing them the assurance that 
future architectures will be able to run their applications 
with a minimum of modlfication. A secondarypurpose is to 
encourage computer architects to develop new types of 
architectures by providing an easily implemented s o f i a r e  
development environment and a library of test applications. 
This new language should be an ideal tool to teach parallel 
programming. In this paper, we will focus on some 
fundamental features of ace  C. 

Index terms- Network Programming, Parallel Compiler, 
Parallel Programming Language 

Introduction 

Parallel and networked computer programming techniques 
have become popular and important computational tools 
taught in first year courses [I]. This paper provides an 
introduction to a new parallel programming language a c e  C, 
a superset of ANS C [2]. We believe a c e  C is ideally suited 
for teaching parallel programming once students have been 
taught C. In this paper, we assume that the reader is 
knowledgeable of ANS C. The concepts designed into ace 
C have incorporated features found in parallel languages 
such APL[3], DAP Fortran [4], Parallel Pascal[S], Parallel 
Forth[6], C* [7], CM lisp [SI, FGPC [9], and MPL[10]. a c e  
has been implemented on top of native C compilers such as 
gcc and Maspar MPL and on top o f  message passing 
libraries such as Cray SHMEM, PVM [I 13, and MPI [12]. 

In this paper, we will focus on particular features of ace  
C (from now on will refer to it as ace)  with examples. For 
more details on the language we refer the readers to see the 
language reference manual [2]. 

a c e  is based on the concept of structured parallel 
execution. First the programmer designs a virtual 
architecture that reflects the spatial organization of an 
algorithm. A virtual architecture may consist of groups or 
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bundles of threads of execution. Code is written reflecting 
the temporal organization of the algorithm. The code defines 
what each thread performs, which together with the virtual 
architecture, defines the algorithm's execution. 

ace  is both data-parallel and task-parallel: data parallel 
in that threads of a bundle execute the same code, and task 
parallel in that threads of different bundles execute different 
code. 

a c e  is architecture-adaptive, because different virtual 
architectures may be used for different physical 
architectures, to improve architecture dependent 
performance with minor changes to the code. 

Typically, a C program has one thread of execution. 
This is the path that a computer takes through a program 
while executing it. More sophisticated compilers and run 
time environments may be able to infer from the code which 
portions of the execution thread may be performed 
concurrently without conflict. However, it is very difficult 
to perform this task automatically. The a c e  language allows 
the programmer to explicitly express that which can be 
performed concurrently, i.e. the parallelism, thus eliminating 
the need for a compiler to second-guess the intents of the 
programmer. 

The purpose of a c e  [2] is to facilitate the development 
of parallel programs by allowing programmers to explicitly 
describe the parallelism of an algorithm. The goals of a c e  

to allow easy expression of algorithms in an 
architecture independent manner. 
to facilitate the programmer's ability to port and 
implement algorithms on diverse computer 
architectures. 
to facilitate the programmer's ability to adapt and 
implement algorithms on diverse computing 
architectures. 
to facilitate the optimization of algorithms on 
diverse computing architectures. 
to facilitate development of applications on 
heterogeneous computing environments and 
programming environments for new computer 
architectures. 

Basics 

The following is an a c e  program. Note that it looks no 
different from a standard C program. 
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Bundle of Hello Worlds 
a c e  program 

* i  
#include <stdio.aHr> 

threads A[ IO]; 

int main () { 
A.{ printf(”Hel1o ace World\n“); ] 

1 
This program will print “Hello a c e  World” 10 times 

because the printf command is performed by each of the 10 
threads of A. 

The difference between ace and C is that while C has 
only one thread of execution, ace,  may have many threads 
of execution. Each thread may be referenced by name and 
index. The ‘Hello World’ program’s primary thread is 
implicitly named ‘MAIN’. This is important when it is 
necessary to communicate between the ‘MAIN’ thread and 
other threads executing concurrently with the ‘MAIN’. Note 
that ‘main’ (lower case) is the name of a function. 

Parallelism in ace is expressed by first defining a set of 
concurrently executable threads. A group of parallel threads 
can be viewed as a bundle of executing threads, a bundle of 
processes, or an array of processors. These three views will 
be treated synonymously. In ace,  a bundle of threads is 
defined with the ‘threads’ statement. The statement “threads 
A[10]” only declares the intent of the programmer to use 10 
concurrent threads of executions named ‘A’ at some later 
point in the code. 

These threads must be assigned storage before they can 
execute any code. Each thread will have its own private 
storage. Variables of a thread can not be accessed directly by 
any other thread. In ace,  there is no global storage, only 
storage local to each thread. Storage is declared for a thread 
by a standard C declaration preceded by the thread’s name. 
All threads of a bundle will be allocated space for any given 
declaration. 

The following statement allocates an integer ‘aval’ for 
each of the 10 threads of bundle ‘A’. 

A int aval; 

Once storage has been assigned to a thread, then code 
may be written that will be executed by the thread. The 
following is a simple piece of code that adds the ten values 
of va12 to the ten values of va13 and stores the ten results in 
the ten locations of vall . 

threads A[ lo]; 

A. { 

1 
Val1 = va12 + va13 ; 

1 

Granted, the values of va12 or va13 were never 
initialized, but that is a different issue. The important point 
here is that execution started with the function ‘main’ by the 
lone thread ‘MAIN’, which transferred control to (forks) the 
10 threads of ‘A’ to add the values of va12 to the values va13 
before returning control to ‘MAIN’. For parallelism to be 
useful, the storage of each thread must contain different 
values. This can be done by different means: 1) read 
different values into the storage of each thread, 2 )  copy a 
built-in value that is unique to each thread into the storage of 
the thread, or 3) obtain a unique value from another thread. 
In the first case the, function ‘fread’ may be used to read 
values into the storage of a thread. 

A. { fread(&val2,sizeof(va12),1 ,file); } 

The fread statement in the context of the threads of A 
will read 10 values from the input file and put them in the 10 
locations of va12 of the 10 threads of A. The second way of 
putting a unique value into each of the 10 locations of va12 
would be to assign a built-in value to va12. 

A.{ va12 = $$i ; ) 

The statement will assign the value of the built-in value 
‘$$i’ to va12. The value of ‘$$i’ is the index of the thread. In 
the case of A, each thread will have a unique index from 0 to 
9. 

Previously, it was pointed out that a thread only has 
direct access to storage local to itself. A thread, however, 
can access storage of another thread indirectly through 
communication operations. There are two basic 
communication operations. In other parallel programming 
paradigms, these are referred to as ‘get’ and ‘put’ operations. 
The following is an example of an ace ‘get’ operation: 

A.{ int a,b; 
a = A[($$i+l)%$$N].b ; 

1 

In this example, the value of ‘b’ is fetch from one thread 
of A to another thread of A. Remember that the value of $$i 
is the index of the executing thread and that $$N is the 
number of threads in the bundle A. Thus the value of 
(($$i+l))%$$N) is the index of a thread other than the thread 
performing the ‘get’ operation. The communication 
operation uses this value to determine which thread to fetch 
the value of ‘b’ from. 

A int vall,val2,val3; 

int main () { 
The following statement is an example of an a c e  ‘put’ 

operation: 
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int a,b; 
A[($$i+l)%$$N].b = a ; 

In this example, the value of ‘a’ of the current thread is 
stored into ‘b’ of a different thread of A. 

In summary, a c e  allows the programmer to declare a 
bundle of parallel threads of execution, allocate the storage 
of each thread, define code to execute on threads 
concurrently, and move values between threads. These are 
the four essential concepts of ace: execution, storage, code, 
and communication. 

Bundles of threads 

In the previous section, the bundle A was declared as a one- 
dimensional array of threads. A bundle may actually be 
declared with any number of dimensions. The statement 

threads B[2][7][20] ; 

declares the bundle B to have three dimensions of sizes 2, 7, 
and 20 respectively and contain 280 threads. 

One may also declare bundles of bundles of threads. In 
the statement 

threads { c[IO], d[20] } e[100] ; 

‘e’ is a bundle of bundles of threads. ‘ 
bundles, each containing 2 bundles, one with 10 threads and 
the other with 20 threads. One should view each bundle of 
‘e’ as 1 e-thread, 10 c-threads, and 20 d-threads, where the 
e-thread is the parent thread of the 10 c-threads and 20 d- 
threads. Thus, there are a total of 3,100 threads defined by 
the statement. 

Since the definition of a bundle is recursive, a bundle 
can contain any number of sub-bundles. Note that all 
bundles are ‘descendents’ of the bundle ‘MAIN’. The 
primary bundle of a bundle declaration, such as ‘e’, is an 
immediate child bundle of ‘MAIN’. The statement 

e’ consists of 100 

threads { s[l l] ,  { { u[34], v[3] } w[102] } t[7] [7] } 2[100] ; 

demonstrates the recursive nature of a bundle declaration. 

Execution 

All operations that can be performed by the thread, ‘MAIN’ 
(Le., any C code), may be performed by any bundle of 
threads concurrently. The only operation supported by ANS 
C, but not by a c e  C is ‘goto’. 

All code that is not labeled with the name of a bundle 
will by default be executed by the lone thread ‘MAIN’. The 
program entry point routine ‘main’ is run by the thread 

‘MAIN’. To start code running on a bundle of threads other 
than ‘MAIN’, a compound statement must be labeled with 
the name of that bundle. A compound statement is code 
enclosed in braces, {}.  A compound statement can contain 
any valid a c e  code. The compound statement labeled with 
the bundle name B, 

B int a, b; 
B.{ a=b; } 

copies the value at location ‘b’ to the location ‘a’. However, 
if a conditional statement is executed from within the labeled 
compound statement, 

B int a, b, z; 
B.{ if(z) { a=b; } } 

Some threads of ‘B’ will copy ‘b’ to ‘a’ while some will 
not, depending on whether ‘z’ was true or not, respectively. 
During the copy operation, all threads for which ‘2’ is true 
are said to be ‘active’ and all threads for which ‘z’ is false 
are said to be ‘inactive’. 

Within the context of a segment of code for bundle ‘B’ 
all active threads of ‘B’ will execute the code, while all 
inactive threads will remain idle. Initially, all threads of all 
bundles are active, and each bundle will only execute code 
explicitly designated for that bundle. Conditional statements 
are used to make some threads of a bundle inactive for a 
portion of code. 

A labeled compound statement creates an execution 
context in which a bundle of threads may execute code. 
These execution contexts may be nested. For example, in the 
statement 

B.{ a=b; A.{ d=c; } x=y; } 

all threads of B will copy ‘b’ to ‘a’, then all threads of A will 
copy ‘c’ to ‘d’, and finally all threads of ‘B’ will copy ‘y’ to 
‘x’: 

This would be equivalent to the statement 

B.{ a=b; } A.{ d=c; } B.{ x=y; } 

Then why would it be necessary for contexts to be 
nested? It is only necessary for contexts to be nested if the 
execution of one context can implicitly affect the execution 
of the other. This can happen if the contained context is 
contained within a condition statement of the containing 
context, as in the statement 

In this example, if ‘a’ is true for any thread of B, then 
‘y’ is copied to ‘x’ for all threads of A. Otherwise, if ‘a’ is 
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false for all threads of B, then ‘y’ will not be copied to ‘x’ 
for any thread of A. 

The next example is a little more complicated 

B.{ if(a) { A.{ x=y; } } else { C.{ s=t; } } 1 

As with the previous example, ‘x’ is copied to ‘y’ only 
if ‘a’ is true for at least one thread of B. And ‘t’ is copied to 
‘s’ if ‘a’ is false for at least one thread of B. An interesting 
side effect of this statement is that ‘x’ will be copied to ‘y’ 
for all threads of A and ‘t’ will be copied to ‘s’ for all 
threads of C as long as ‘a’ is true for some threads and false 
for others. Putting it another way, if any thread of B is active 
within the context of A, then all threads of A will be active. 

Functions in a c e  must be declared as to which bundle 
may call them. This is done by preceding the routine’s 
declaration with the name of the bundle. 

B int aroutine( int c, int b) { ... code ... } 

The function, aroutine, may be called from within the 
context of any code executed by B. 

variables for each of these categories: 1) the number of 
threads within the category, 2) the log of the number of 
threads within the category (if the number is a power of 2), 
and 3) the sequential identifier of the thread within the 
category. The definitions of the system constants are: 

$$Name - the name of the bundle of threads (char*). 
$$D - the number of dimensions of the bundle. 
$$N - the total number of threads in the bundle (over all 

sub-bundles). 
$$L - the log base 2 of the total number of threads in the 

bundle (equals -1 if 
$$N - is not a power of 2). 
$$i - the thread identifier of the thread with respect to 

all the threads of the bundle. 
$$ii - the physical thread identifier (where the thread is 

executing within an architecture). 
$$Nx[d] - the number of threads of d-th dimension of the 

bundlehub-bundle. 
$$Lx[d] - the log base 2 of the number of threads of d-th 

dimension of the subbundle (equals -1 if $$Nx[d] 
is not a power of 2). 

$$ix[d] - the thread identifier of the thread in d-th 
dimension of the bundle/subbundle. 

Communication 
The following example uses the bundle description: 

A conditional expression can also affect communications. 
Only active threads can initiate a ‘get’ or ‘put’ operation. In 
the statement 

B.{ if (a) { b=A[idx].x; } } 

only threads of B for which ‘a’ is true actually fetch a value 
from the storage location ‘x’ of a thread of A. And in the 
statement 

B.{ if (a) { A[idx].y = b; } } 

only active threads of B will store (or put) values into 
threads of A. 

Threads of A need not be active to be fetched from or 
have their storage modified. For example, in the statement 

A.{ if (!$$i) { B.{ if (a) { A[idx].y = b; } } } } 

all but one thread of A are made inactive; yet, any active 
thread of B may store (or put) values into any thread of A 
whether the thread of A is active or not. 

Element Identification 

Threads within a bundle are identified by system-defined 
constants. There are two categories under which a thread can 
be identified: 1) globally among all threads of a bundle and 
2) within a dimension of a sub-bundle. There are three 

threads { B[2][2] } A[2]; 

A A 

4 0 0  5 0 1  

2 1 0  3 1 1  6 1 0  7 1 1  

Figure 1 : Bundle of Threads 

A has 2 threads. In Figure 1, there is a pair of numbers under 
each A. The first number is its value for $$i, and the second 
is its value for $$ix[O]. There is a triplet under each thread of 
B. The first number is its value of $$i, the second is its value 
of $$ix[l], and the third is its value of $$ix[O]. Note that the 
threads of ‘B’ form two sub-bundles, one under A[O] and 
another under A[1]. A sub-bundle consists of all the threads 
of a bundle that have the same parent thread (contained in 
the parent bundle.) For example, ‘A’ is the parent bundle of 
‘B’ and B[4], B[5], B[6], and B[7] make up a sub-bundle of 
‘B’ whose parent thread is A[1] of bundle ‘A’ . The values 
of the other system constants of A are: 

$$NAME = ”A“, $$D = 1, $$N=2, $$L=l, $$Nx[O]=2, 
$$Nx[ 1]= $$Lx[ I]<undefined>, and $$Lx[O]=l.. 

The values of the other system constants of B are: 
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$$NAME = “B”, $$D = 2, $$N=8, $$L=3, $$Nx[O]=2, 
$$Nx[1]=2, $$Lx[O]=I, and $$Lx[ ]]=I. 

Input & Output (I/O) 

I/O is defined as an order sequence of data that is to be 
placed in a file. The data can be placed in the file 
concurrently, but the order within the file will be ordered 
sequentially. 110 in a c e  is in order of thread identifier. For 
example, 

threads CLX3 [ 10001 
CLX3.{ int buff; 

buff = $$i ; 
fwrite( &buff, sizeof(int), 1, FILEptr ) ; 

The thousand values of ‘buff will be written to the file 
whose descriptor is located at FILEptr. If the above code is 
contained within a conditional statement, only a subset of 
the values of ‘buff, corresponding to the active threads, will 
be written to the file. And in, 

threads C[ 10001 
C.{ int a; 

a=$$i; 
if ($$i<4 1 1  $$i>995 ) 
fwrite(&a,sizeof(int), 1 ,FILEptr); 

1 
The code segment will write eight values into the file, 

four from the first four threads of C and four from the last 
four threads of C in that order. ace has another form of I/O, 
it is called fast I/O. The fast I/O routines ffopen, ffread, 
ffwrite, and ffclose correspond to the standard I/O routines 
fopen, fread, fwrite, and fclose, except that their use is very 
machine dependent. Files written by fast VO must be read by 
fast I/O. Also, files written with fast YO must be read by a 
bundle with exactly the same geometry as the bundle that 
wrote. Fast I/O is intended to be implemented with the 
fastest form of I/O available on the architecture, which may 
differ from architecture to architecture. 

Communications Path Descriptions 

Communication between two threads is defined by a 
communication expression. A communication expression 
consists of two parts: the communication path description or 
router expression, and the remotely evaluated numeric 
expression. In the case of a fetch or get, the evaluated 
numeric expression must evaluate to a value, while in the 
case of a send or put operation, it must evaluate a remote 
address. The router expression is used to define many 
concurrent communication paths from threads of one bundle 
to the threads of another, or even to the same bundle. In 

threads A[]]; threads B[l]; 

A.{ int t; B int s; t = B[O].(s+l); } 

B[O] is the router expression, (s+l) is the remote expression 
that is executed on the threads of B, and t is the variable in 
each of the threads of type A to which the values received 
from the threads of type B are stored. The threads of B need 
not be currently active to evaluate the expression (s+l). 
However, a thread of B does need to be a thread which can 
be fetched from for the expression to be evaluated. Though a 
thread may have many threads fetching from it, the 
expression will only be evaluated once. In effect, this 
technique can be used to temporarily reactivate threads. 

The router expression describes the path between the 
remote execution context and the local execution context. If 
the router expression is the source of a value (a gather or 
fetch operation), the remote context computes a value, and 
that value is fetched by the local context from the remote 
thread that is described by the router expression. The 
previous example demonstrates communications between 
two single-thread bundles. For more details on path 
descriptions see[2]. 

Scatter and Gather 

Data is fetched from or sent to the threads of a remote 
bundle depending on whether the router expression is on the 
right or left side of an assignment. If the router expression is 
on the right side of an assignment, it is a ‘gather’ from the 
remote threads. 

If the expression is on the left side of an assignment, it 
is a ‘scatter’ to the remote threads. The following is an 
example of a gather operation: 

H.{ int a,x,y; B int b; a = .A.C[x].B[y].b ; } 

Reversing the sides of assignment makes it a scatter 
operation: 

H.{ int a,x,y; B int b; .A.C[x].B[y].b = a; } 

The value of ‘a’ in H is sent to the specified remote 
variable ‘b’ of thread B. If a scatter add operation such as, 

H.{ int a, x, y; B int b; .A.C[x].B[y].b += a; } 
is performed and multiple values are sent to the same thread, 
they are summed together. Since more than one thread can 
send to the same thread, the data will either have to be 
combined, or some will be lost. Therefore, when data is sent 
to another thread, there are several options for combination 
into the remote location, such as addition (+=), subtraction (- 
=), multiplication (*=), division (/=), and (&=). or ( I = ) ,  
exclusive-or (”=), minimum (?<=), and maximum (?>=). 
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A scatter operation returns a flag to the expression in 
which it is contained, rather than a value. This flag indicates 
whether or not the value being sent actually was received at 
the destination thread. 

H.{ int a, x, y; B int b; flag=(.A.C[x].B[y].b = a) ; } 

In the above example, the values of ‘a’ in bundle H are 
being sent to the variables ‘b’ in bundle B. The value of the 
flag, after the values have been sent, is TRUE if the specific 
value of ‘a’ actually reached the requested instance of ‘b’ 
and FALSE if it did not. There are two reasons a value may 
not reach its destination: 1) the address of the destination 
thread is not a valid one, or 2) the scatter operation is ‘=I. If 
the scatter operation is ‘=I, at most one value will be received 
by any destination thread. Therefore, only one of the source 
threads that send to the same destination thread will have its 
value received and its receive flag set to TRUE. 

Pre-computed Paths 

A fair amount of time in a communications operation may 
be spent computing the identifiers of the remote threads 
involved in the communications. The ability to define a path 
description as a variable that is computed at run time allows 
a path description to be pre-computed and optimized once, 
and yet used many times. This amortizes the cost of 
computing a path descriptor across multiple uses of the 
descriptor. A path is declared as follows: 

H.{ path(B) toB; int aO,al,a2,x,y; B int bO,bl,b2; 
toB = C[x].B[y]. ; 
@toB.bO = a0 ; 
@toB.bl = a l  ; 
@toB.b2 = a2 ; } 

The path toB is a path from the local context of H to the 
remote context of B. Note in the above example, toB was 
computed once but was used in three communications 
operations. Pointers to or arrays of paths may also be 
declared. 

H.{ path(B) toB[4]; @toB[l].bl = a1 ; ) 
H.{ path(B) *toB; @(*toB).bl = a1 ; } 

An array element from a path array need not be 
enclosed in parentheses when used, but a pointer to a path or 
any address expression that points to a path does. 

Generic Routines 

Most routines are specific to only one bundle. Some, 
however, are useful to many bundles. These are referred to 
as generic routines. A generic routine is declared by 
preceding it with the key word generic in place of a specific 

bundle name. Trigonometric functions are examples of such 
routines. There is nothing about a sine function, for example, 
that makes it inherently specific to any bundle. A sine 
function can be applied to all threads of a bundle and is 
trivially parallel (i.e., requires no communication between 
threads.) This makes it a simple generic routine, and allows 
it to be executed within the context of any bundle. An 
example of a simple generic routine is: 

generic double sin (double x) { ... C code ... } 

Generic routines can also include inter-processor 
communication. These are complex generic routines. A 
complex generic routine also can have a bundle as an 
argument. 

Summary 

We have introduced a new computer language, a c e  C, that is 
ideally suited to parallel, networked, and cluster computing. 
We have presented the basics of the language, the concept of 
threads and bundles of threads, execution of programs, 
communication, element identification, input and output 
(VO), communications path description, scatter and gather, 
pre-computed paths, and generic routines. These tools and 
the a c e  C language greatly enhance the teaching of parallel 
programming. 
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